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Background

• GPU clusters are common as HPC systems
• High peak performance / cost ratio

• High peak performance / power ratio

• Strong scaling on GPU clusters is difficult.
• Large gap between computation perf. and communication perf.

• Communication latency between GPUs is larger than between CPUs

• Improving communication performance between GPUs is 
demanded for HPC
• Our target is to develop a direct communication system between 

GPUs over different nodes for future accelerated computing
⇒ Tightly Coupled Accelerators (TCA) architecture
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Our Previous Work on TCA

1. “Tightly Coupled Accelerators Architecture for 
Minimizing Communication Latency among 
Accelerators,” In AsHES 2013.
• Introduction (descriptions) on the TCA architecture

• Performance evaluation on the ping-pong communication of 
TCA

2. “QCD Library for GPU Cluster with Proprietary 
Interconnect for GPU Direct Communication,”
In HeteroPar 2014.
• Application of TCA to improve the communication 

performance in QUDA QCD library
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Motivation

• Further performance evaluation of TCA

• Implementing CG method by using TCA
• CG method: Iterative solution for systems of linear equations

• Implementing allgather and allreduce collective 
communication with TCA API

• Evaluating the performance and seeing how TCA is 
effective
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TCA (Tightly Coupled Accelerators) 
Architecture

• Technology for direct connection between accelerators 
(GPUs) over different nodes without CPU assistance.
• Low communication latency

• By eliminating extra data copy to the host (CPU)

• Improves strong scalability
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PEACH2

• PCI Express Adaptive Communication Hub ver. 2

• Implementation of TCA by FPGA

• Enables direct connection between GPUs with
PCI-Express (PCIe) technology
• Direct data copy is accomplished by NVIDIA GPUDirect

Support for RDMA (GDR)

• Protocol conversion is not required
⇒ Lower latency than InfiniBand

• Contains 4 PCIe ports (3 external ports)
• Each port has PCIe Gen2 x8 bandwidth (4 GB/s peak)

• NOTE: For convenience, we call this implementation of 
TCA on PEACH2 as “TCA”.
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HA-PACS/TCA

• Proof-of-concept GPU cluster of TCA concept in HA-PACS 
project

• 64 compute nodes in total
• 4 sub-clusters each of which 

consists of 16 nodes

• PEACH2 is equipped with
• Sub-cluster configures 2x8 ring (torus) network.

• By connecting 3 neighbor nodes
through 3 PCIe ports of PEACH2

• MPI communication through InfiniBand
is also possible.
• Can be considered to be a normal GPU cluster

• Full-bisection bandwidth fat-tree network.
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Performance Evaluation Condition

• Evaluation on
a sub-cluster of
HA-PACS/TCA
• Up to 16 nodes 

(processes)

• Using 1 GPU / node

Hardware

CPU Intel Xeon E5-2680 2.8 GHz × 2 

(IvyBridge 10 cores / CPU)

GPU NVIDIA Tesla K20X × 4

(Kepler GK110 2688 cores / GPU)

TCA PEACH2 board 
(Altera Stratix-IV GX 530 FPGA)

InfiniBand Mellanox Connect-X3 Dual-port 
QDR

Software

CUDA 6.5

MPI MVAPICH 2 GDR 2.1a

C Compiler Intel Compiler 14.0.3
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MPI (MVAPICH2-GDR)

• We compare the performance of implementation using 
TCA with using MPI communication.

• MPI Impl.: MVAPICH2-GDR 2.1a（MV2GDR)

• MPI implementation for InfiniBand

• As with TCA, MV2GDR utilizes GPU Direct for RMA (GDR) to 
improve latency and bandwidth for small data 
communication
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Ping-pong GPU-to-GPU Communication 
Performance 

Latency Bandwidth
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TCA Implementation of
Collective Communication

• Allgather
• All processes gather data of each process. 

• Gathering data of KB-MB order
• Communication bandwidth as well as latency is important.

• Allreduce
• Conducts specified operation (sum, max, …) among 

data arrays (𝑥𝑖) of each process and store the reduction 
result in all processes.

• Targeted for CG method, we implement and tune 
allreduce (sum) for double-precision scalar (8 Bytes) data.  

- (𝑥0 + 𝑥1 + 𝑥2 + 𝑥3 =  𝑖=0
3 𝑥𝑖)

• Latency decides the performance.
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Algorithms for Collective Communication

• Implement and evaluate 4 algorithms
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Allgather Implementation:
Recursive Doubling (In case #processes = 16)

• Requires 4 (= log2p) steps

• Node mapping optimization
1. Same hop counts between 

any nodes in every step

2. Communicate data with 
neighbor node in the last 
step
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Impact of Node Mapping to 
Allgather Performance (#Processes=16)
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Allgather Perfomance Comparison among
Different Algorithms

• Time for all-gathering 128 KB data

• N=16384 case in CG method

• Recursive Doubling shows good performance

• However, when p=16, TCA is slower than MPI for this size
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Allgather Performance (#Processes=16)
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Allgather Performance (#Processes=4)
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Allreduce Performance

• CPU-to-CPU allreduce time for 8 Bytes scalar data

• Dissemination algorithm is the fastest.

• TCA/PEACH2 is more than 2x faster than MPI/IB
• Low latency of TCA works effectively
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CG (Conjugate Gradient) Method

• Iterative solution for systems of linear 
equations
• Ax = b

• A: N-by-N symmetric positive-definite 
matrix (sparse matrix)
• Sparse matrix is stored in 

CRS (Compressed Row Storage) order.

• x, b: N-dimensional vector
• No preprocessing

• Main computation parts
（NVIDIA’s cuSPARSE and cuBLAS are utilized）
• SpMV x1 – Sparse Matrix-Vector Multiply 

(q := Ap)
• DOT x3 – Vector Dot Product (α := pTq)
• AXPY x3 – Vector Multiply-Add (y := αx + y)
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Parallelization of CG Method

• Parallelized by row-wise 

one-dimensional partitioning 

of matrix A
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Parallelization of CG Method

• Parallelized CG method requires 

collective communications 

among all processes

1. Allgather : Gathering required 
vector data for SpMV

2. Allreduce: Reduction for having 
the summation of the local dot 
product

• Implemented collective 
communications are utilized.
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CG Method Performance:
Target Sparse Matrices

• Sparse matrices are from Univ. Florida Sparse Matrix 
Collection

• Matrix size (#Rows) is 1,000s to 10,000s
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Matrix 
Name

nasa2910 smt nd6k nd24k

#Rows (N） 2,910 25,710 18,000 72,000

#Non-zero
(nnz) 

174,296 3,753,184 6,897,316 28,715,634

nnz/N 59.9 146.0 383.2 398.8



CG Method Performance

• Time for 1,000 iterations
• Allgather is implemented with 

recursive doubling

• Allreduce is implemented with 
dissemination algo.

• For nd6k, nd24k, parallelization 
yields improvement.

• For smt, using 4 processes is the 
fastest.

• For nasa2910, parallelization 
deteriorates the performance.
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CG Method Performance:
Time breakdown (nasa2910)

N=2,910, nnz=174,296

• TCA is faster than MPI, but performance does not scale

28

Breakdown of rank0

0

50

100

150

200

250

300

350

Serial TCA MPI TCA MPI TCA MPI TCA MPI

p=1 p=2 p=4 p=8 p=16

Ex
e

cu
ti

o
n

 t
im

e
 [

m
se

c]

Allreduce

Allgather

Others

AXPY

DOT

SpMV

B
etter



CG Method Performance:
Time breakdown (smt)

N=25,710, nnz=3,753,184

• TCA improves the performance.
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CG Method Performance:
Time breakdown (nd24k)

N=72,000, nnz=28,715,634

• Performance scale well, but TCA is not faster than MPI.
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Discussion

Matrix size Small
（1,000s）

Medium
（10,000s）

Large

Performance 
improvement by TCA

Large Not-so-bad No

Strong scalability No Not-so-bad High
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• Implementing CG method with one-dimensional 
partitioning is not very suitable for TCA utilization.
• We plan to implement and evaluate CG method with two 

dimensional partitioning.



Conclusion

• Collective communication using TCA/PEACH2’s low 
latency communication improves the performance 
for small sizes.

• TCA improves the performance of CG method under 
specific conditions (10,000s rows of matrix).

• We will continue the research on TCA

• Future work:
Making performance models to predict impact of TCA 
utilization to the performance.
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